企业🤖AI智能体构建引擎,智能编排和调试,一键部署,支持知识库和私有化部署方案 广告
[TOC] ## 关键特点 1. 新型的计算范式 - AI 计算既不脱离传统计算,也具有新的计算特质,如处理的内容往往是非结构化数据(视频、图片等)。处理的过程通常需要很大的计算量,基本的计算主要是线性代数运算,而控制流程则相对简单。处理的过程参数量大。 2. 训练和推断 - AI 芯片通常涉及训练和推断过程。简单来说,训练过程是指在已有数据中学习,获得某些能力的过程;而推断过程则是指对新的数据,使用这些能力完成特定任务(比如分类、识别等)。 3. 大数据处理能力 - 人工智能的发展高度依赖海量的数据。满足高效能机器学习的数据处理要求是AI 芯片需要考虑的最重要因素。 4. 低精度 - 低精度设计是AI 芯片的一个趋势,在针对推断的芯片中更加明显。对一些应用来说,降低精度的设计不仅加速了机器学习算法的推断(也可能是训练),甚至可能更符合神经形态计算的特征。 5. 可重构的能力 - 针对特定领域而不针对特定应用的设计,将是AI 芯片设计的一个指导原则,具有可重构能力的AI 芯片可以在更多应用中大显身手,并且可以通过重新配置,适应新的AI 算法、架构和任务。 6. 开发工具 - 就像传统的CPU需要编译工具的支持, AI 芯片也需要软件工具链的支持,才能将不同的机器学习任务和神经网络转换为可以在AI 芯片上高效执行的指令代码。